Rat organic anion transporter 3 (rOAT3) is responsible for brain-to-blood efflux of homovanillic acid at the abluminal membrane of brain capillary endothelial cells.
نویسندگان
چکیده
The mechanism that removes homovanillic acid (HVA), an end metabolite of dopamine, from the brain is still poorly understood. The purpose of this study is to identify and characterize the brain-to-blood HVA efflux transporter at the rat blood-brain barrier (BBB). Using the Brain Efflux Index method, the apparent in vivo efflux rate constant of [3H]HVA from the brain, k(eff), was determined to be 1.69 x 10(-2) minute(-1). This elimination was significantly inhibited by para-aminohippuric acid (PAH), benzylpenicillin, indoxyl sulfate, and cimetidine, suggesting the involvement of rat organic anion transporter 3 (rOAT3). rOAT3-expressing oocytes exhibited [3H]HVA uptake (K(m) = 274 micromol/L), which was inhibited by several organic anions, such as PAH, indoxyl sulfate, octanoic acid, and metabolites of monoamine neurotransmitters. Neurotransmitters themselves did not affect the uptake. Furthermore, immunohistochemical analysis suggested that rOAT3 is localized at the abluminal membrane of brain capillary endothelial cells. These results provide the first evidence that rOAT3 is expressed at the abluminal membrane of the rat BBB and is involved in the brain-to-blood transport of HVA. This HVA efflux transport system is likely to play an important role in controlling the level of HVA in the CNS.
منابع مشابه
Contribution of organic anion transporter 3 (Slc22a8) to the elimination of p-aminohippuric acid and benzylpenicillin across the blood-brain barrier.
The role of rat organic anion transporter 3 (rOat3; Slc22a8) in the efflux transport at the blood-brain barrier (BBB) was characterized. The expression of rOat1, rOat2, and rOat3 in the brain capillary endothelial cells (BCEC) was examined using reverse transcription-polymerase chain reaction analysis, which showed that there was no expression of rOat1 or rOat2, but moderate expression of rOat3...
متن کاملRoles of inner blood-retinal barrier organic anion transporter 3 in the vitreous/retina-to-blood efflux transport of p-aminohippuric acid, benzylpenicillin, and 6-mercaptopurine.
The purpose of the present study was to characterize rat organic anion transporter (Oat) 3 (Oat3, Slc22a8) in the efflux transport at the inner blood-retinal barrier (BRB). Reverse transcription-polymerase chain reaction analysis showed that rat (r) Oat3 mRNA is expressed in retinal vascular endothelial cells (RVECs), but not rOat1 and rOat2 mRNA. The expression of Oat3 in the retina and human ...
متن کاملMouse reduced in osteosclerosis transporter functions as an organic anion transporter 3 and is localized at abluminal membrane of blood-brain barrier.
The "reduced in osteosclerosis" transporter (Roct), which shows decreased expression in the osteosclerosis (oc) mutant mouse, has high homology with rat and human organic anion transporter 3 (OAT3). However, its transport properties and involvement in bone turnover are poorly understood. Here, we examined Roct-mediated transport using a Xenopus laevis oocyte expression system. Roct-expressing o...
متن کاملExpression and functional characterization of rat organic anion transporter 3 (rOat3) in the choroid plexus.
We reported previously that an efficient efflux system for benzylpenicillin (PCG) is located on the choroid plexus (CP). In this study, we investigated the involvement of rat organic anion transporter 1 (rOat1; Slc22a6) and rOat3 (Slc22a8) in the uptake of PCG and p-aminohippurate (PAH) by the CP. Western blot analysis indicates the expression of rOat3, but not rOat1, on the CP, and immunohisto...
متن کاملMechanisms and regulation of iron trafficking across the capillary endothelial cells of the blood-brain barrier
The transcellular trafficking of iron from the blood into the brain interstitium depends on iron uptake proteins in the apical membrane of brain microvascular capillary endothelial cells and efflux proteins at the basolateral, abluminal membrane. In this review, we discuss the three mechanisms by which these cells take-up iron from the blood and the sole mechanism by which they efflux this iron...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism
دوره 23 4 شماره
صفحات -
تاریخ انتشار 2003